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SUMMARY The literature review presented here details recent research involving

members of the poly(ADP-ribose) polymerase (PARP) family of proteins. Among the

17 recognized members of the family, the human enzyme PARP1 is the most exten-

sively studied, resulting in a number of known biological and metabolic roles. This

review is focused on the roles played by PARP enzymes in host-pathogen interac-

tions and in diseases with an associated inflammatory response. In mammalian cells,

several PARPs have specific roles in the antiviral response; this is perhaps best illus- Citation Brady PN, Goel A, Johnson MA. 2019.
trated by PARP13, also termed the zinc finger antiviral protein (ZAP). Plant stress re- Poly(ADP-ribose) polymerases in host-

n nd immuni r | r I IvV(ADP-ri Dation. PARP rom pathogen interactions, inflammation, and
:spo ses and unity are a S? egu.ated b){ poly(AD bo§y Jatio S. promote immunity. Microbiol Mol Biol Rev 83:¢00038-18.
inflammatory responses by stimulating proinflammatory signal transduction path- https://doi.org/10.1128/MMBR.00038-18.
ways that lead to the expression of cytokines and cell adhesion molecules. Hence, Copyright © 2018 American Society for
PARP inhibitors show promise in the treatment of inflammatory disorders and condi- e ieia Al g it Heseries.
tions with an inflammatory component, such as diabetes, arthritis, and stroke. These JAddress correspondence to Margaret A

ohnson, maggiejohnson@uab.edu.
functions are correlated with the biophysical characteristics of PARP family enzymes. Published 19 December 2018
This work is important in providing a comprehensive understanding of the molecu-
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lar basis of pathogenesis and host responses, as well as in the identification of inhib-
itors. This is important because the identification of inhibitors has been shown to be
effective in arresting the progression of disease.

KEYWORDS ADP-ribosylation, poly(ADP-ribose) polymerases, poly(ADP-ribose),
antiviral responses, autoimmunity, enzyme inhibition, host-pathogen interactions,
inflammation, stress granules, transcriptional regulation

INTRODUCTION

oly(ADP-ribose) (PAR) is an unusual nucleic acid that is derived from NAD™* by the

action of poly(ADP-ribose) polymerase (PARP) enzymes. This polymer is usually
found as a posttranslational modification of proteins and performs a wide variety of
signaling, regulatory, and metabolic functions in cells. Essential functions in DNA
damage repair, RNA biology, stress responses, the cell cycle and cell death pathways,
gene expression regulation, chromatin remodeling, and others have been identified (1).
PAR was originally identified in 1963 by the laboratories of P. Chambon and coworkers
as the insoluble portion of hen liver nuclear extracts (2). Subsequently its primary
structure was determined by the Mandel, Hayaishi, and Kawamura laboratories inde-
pendently (3-5). Enzymes responsible for poly(ADP-ribose) polymerase and mono(ADP-
ribosyl)transferase (MART) activities were subsequently discovered in the 1980s and
1990s, respectively (6-9). A distinction is now made between PARPs, which catalyze
ADP-ribose (ADPR) polymerization or poly(ADP-ribosyl)ation, and enzymes that transfer a
single ADP-ribose monomer. The latter is termed mono(ADP-ribosyl)ation (MARylation). The
entire enzyme family is now also referred to as diphtheria toxin-like ADP-ribosyltransferases
(ARTDs), referring to their mechanistic similarity to the ADP-ribosylating diphtheria toxin
proteins (10).

Seventeen human PARP enzymes have been identified (10). In addition, approxi-
mately 1,900 other PARP family enzymes have been identified in other organisms,
primarily eukaryotes (11-13). Table 1 lists the most current nomenclature of PARPs/
ARTDs along with other names associated with PARP protein family members.

PARP family members have essential roles in the cell. Well-characterized roles exist,
for example, in DNA damage repair. PARP1 and PARP2 are important components of
the single-strand break (SSB) repair and base excision repair pathways. PARP1 and
PARP3 participate in double-strand break (DSB) repair (reviewed in reference 14). Other
roles include regulating the cell cycle, regulating transcription, participating in chro-
matin remodeling, and interacting with epigenetic mechanisms (15-18). When acting
as transcriptional cofactors, PARPs participate in regulating circadian rhythms, guiding
embryonic development, reprogramming somatic cells, and cellular differentiation
(19-27). Additional roles in RNA biochemistry have recently been discovered. PARPs
participate in the regulation of ribosome biogenesis and nucleolar structure and assist
in controlling mRNA stability and translation (22, 28-34). PARP activity also impacts the
regulation of alternative splicing and RNA silencing (35-37).

PARPs play significant roles in the development of cancer and have been shown to
contribute to six of the eight “hallmarks of cancer”: metastasis, replicative immortality,
angiogenesis, cell death resistance, avoidance of growth suppression, proliferative
signaling, deregulation of cellular energetics, and avoidance of immune destruction
(38). Through these functions, PARP inhibition has become important in treating several
types of cancer, and several PARP inhibitors have been successful in clinical trials.
Examples include the compounds olaparib and veliparib, which are applied to the
treatment of ovarian, breast, and lung cancers (39).

This review discusses emerging roles of PARPs and poly(ADP-ribosyl)ation (PARyla-
tion) in inflammation, immunity, and host-pathogen interactions. Increasing evidence
shows that PARPs have importance in viral infection, often being coopted by both DNA
and RNA viruses. PARPs also contribute to inflammatory responses, and PARP inhibition
shows promise for the treatment of chronic inflammatory conditions. Recent studies
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TABLE 1 Nomenclature, predicted mode of PARylation, and novel biological roles in immune response to pathogens and inflammatory
response of PARP family enzymes?

Novel biological role(s) in inflammatory

PARP name ARTD name Alternative name Catalysis mode and autoimmune diseases

PARP1 ARTD1 Poly Antiviral and proviral functions; anti- and
proinflammatory responses

PARP2 ARTD2 Poly Pathogen response

PARP3 ARTD3 Poly

PARP4 ARTD4 vPARP Poly Antiviral

PARP5a ARTD5 Tankyrase 1 Poly Antiviral

PARP5b ARTD6 Tankyrase 2 Poly Proinflammatory

PARP6 ARTD17 Mono

PARP7 ARTD14 TI PARP Mono Antiviral

PARP8 ARTD16 Mono

PARP9 ARTD9 BAL1 Mono Antiviral

PARP10 ARTD10 Mono Antiviral and anti-inflammatory

PARP11 ARTD11 Mono

PARP12 ARTD12 Mono Antiviral

PARP13 ARTD13 ZAP1 Inactive Antiviral

PARP14 ARTD8 BAL2 Mono Antiviral and anti-inflammatory

PARP15 ARTD?7 BAL3 Mono Antiviral

PARP16 ARTD15 Mono Proinflammatory

aList of the most current nomenclature of the PARP family of proteins (both formal and common), the classifications of the enzymes with respect to their
mono(ADP)ribosylation (Mono) or poly(ADP)ribosylation (Poly) catalytic activity, and novel biological roles of the proteins in immune and inflammatory responses.
Several PARP enzymes (PARP3, -6, -8, and -11) have yet to have roles in either the immune or inflammatory responses identified (10, 624, 636).

also show that PARPs participate in responses to infection, and other stress responses,
in various organisms.

FUNCTION AND CLASSIFICATION OF PARP ENZYMES

Classification of PARP enzymes is based on the reactions catalyzed combined with
phylogenetic analysis and domain structure. As illustrated in Fig. 1, each protein has a
unique domain structure, though similarities are present. For example, the C-terminal
PARP catalytic (CAT) domain, which is the site at which ADP-ribosyl transfer occurs (40),
is found in PARP enzymes and contains an ART fold that is conserved throughout the
PARP family as well as a helical domain (HD) that is conserved in the DNA damage
response PARPs (41, 42). In PARP4, an enzyme localized to cytoplasmic vaults, the
catalytic domain is located at the N terminus. The catalytic triad often indicates the
function of the protein and is one way in which the enzymes can be categorized. In
PARP1, the catalytic domain is characterized by a 50-amino-acid signature sequence
which is conserved in vertebrates and also displays partial conservation among all
species (43).

Of the known human PARPs, five (PARP1, PARP2, PARP4, PARP5a, and PARP5b) are
polymerases in that they form polymers. These five PARPs share a conserved catalytic
triad consisting of histidine, tyrosine, and glutamate (H-Y-E) residues. Ten were shown
to transfer a single ADP-ribose unit and are classified as mono(ADP-ribosyl)transferases
(MARTs), namely PARP3, PARP6 to -12, and PARP14 to -16 (44-46). PARP6, -8, and -16
are grouped together based on phylogenetic analysis of PARP catalytic domains (12).
One human PARP protein, PARP13, is so far believed to be catalytically inactive (44).
Table 1 lists the transferase activity of each enzyme.

The presence of a variety of other domains appears to generate many other
biological and biochemical functions for this family of proteins and allows them to be
grouped into subfamilies on the basis of their functions (47). In 2006, Schreiber et al.
proposed classifying PARPs into the following groups on the basis of their identified
functional domains and presumed functions: (i) DNA-dependent PARPs, which act as
molecular sensors of DNA breaks and play a role in the spatial and temporal aspects of
DNA repair; (ii) tankyrases, which play a role in telomere homeostasis; (iii) CCCH-type
PARPs, which contain zinc fingers and whose sites of expression indicate a possible role
in neurological functions; and (iv) macro-PARPs, which consist of conserved macrodo-
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FIG 1 Domain structure of the human PARP family of enzymes, showing the variation in the length of the sequence and domain structure. The ART is the
catalytic domain of the sequences, some of which have a conserved sequence comprised of residues 859 to 908. In addition, in select PARPs, a catalytic glutamic
acid corresponding to position 988 of PARP1 has been identified and is highlighted by a shaded region in the ART domain. The helical domain (HD) is the PARP
regulatory domain which is involved in the activation of the enzyme and regulation of the branching of PAR structures. WGR is a domain in which the
characteristic sequence Trp-Gly-Arg is present. The BRCT domain is the BRCA1 carboxyl-terminal domain which is found in many cell cycle and DNA damage
repair proteins. Within the BRCT domain lies the automodification domain (AMD), which is responsible for some of the dimerization of PARP enzymes. ZF is
the zinc finger domain, which participate in DNA binding, and ZF/THP is the TiPARP homologous domain. SAP is the SAF/Acinus/PIAS-DNA-binding domain.
RRM is the RNA-binding/recognition motif. SAM is the sterile alpha motif, which is often found in signaling and nuclear proteins. ARD is the Ankyrin repeat
domain, which helps to mediate protein-protein interactions between proteins from diverse families. The HPS domain is the His-Pro-Ser region. Both the VIT
(vault protein interalpha-trypsin) and the VWA (von Willebrand type A) domains are conserved regions that are both thought to mediate protein-protein
interactions. MVP-ID is the major-vault particle interaction domain. Macrodomain, poly(ADP-ribose) interaction domain; WWE, iso(ADP-ribose) and protein-
protein interaction domain with Trp-Trp-Glu conserved sequence. UIM is the MAO interaction motif, GRD is a glycine-rich domain. And TMD is the
transmembrane domain. CCCH is the Cys-Cys-Cys-His zinc finger domain (10, 181, 637).
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mains that are linked to a PARP domain. There are several PARP family members that are
not classed among these groups, i.e.,, PARP4, PARP6, PARP8, PARP10, and PARP11 (47).

PARPs in DNA Repair

Though PARPs perform numerous functions, there are several broad categories that
are well established. The first is as a DNA damage response protein. PARP1, PARP2, and
PARP3 are DNA-dependent enzymes that are activated upon binding to DNA damage
and play important roles in the repair of DNA strand breaks (48). To date, three PARP
enzymes (PARP1, -2, and -3) have been identified to play a role in DNA repair, with the
role of PARP1 having been studied the most extensively (49-51). PARP1 has been
proposed as a general DNA damage sensor and is activated by several types of
damaged DNA, including hairpins, cruciform DNA, loops, nicked DNA, blunt ends, and
overhangs (52, 53). PARP1 may also interact with other non-B DNA structures, such as
G quadruplexes (54). In contrast, PARP2 and -3 play more specific roles in DNA repair
pathways. PARP2 participates in the base excision repair (BER) pathway, interacting
with the X-ray repair cross-complementing protein 1 (XRCC1) and DNA ligase Ill (55, 56).
The depletion of PARP2 results in an increased sensitivity to ionizing radiation and
alkylating agents, which is consistent with a role in single-strand break (SSB) repair (55,
57). PARP2 is the closest paralogue of PARP1 and in the presence of DNA damage is
responsible for most of the residual PARP activity in PARP1=/~ cells (50, 58). While
either PARP1 or PARP2 can be knocked out in mice without causing serious defects, a
double knockout is lethal in the embryo, suggesting that the functions of these two
enzymes are partly redundant (57).

In contrast, PARP3 has been shown to play a role in double-strand break (DSB) repair
by interacting with the aprataxin-like factor (APLF) at damaged sites (49, 59). PARP3 also
helps to promote accurate ligation of DSB by XRCC4 and DNA ligase IV during the
nonhomologous end-joining (NHEJ) process (49, 60). PARP3 was shown to ADP-
ribosylate histone H2B, and this was required for the SSB response (61). PARP2 and
PARP3 enzymes are activated by a smaller subset of damaged DNA types, which is
consistent with their specific roles. Thus, PARP2 is activated by DNA containing “flaps
and gaps” (62), while PARP3 is activated by blunt ends (49). Both enzymes are activated
by 5’-phosphorylated nicks (42).

PARP1 to -3 also have the capacity to ADP-ribosylate DNA, with the modification
occurring at double-strand break termini. This activity may help to mark the locations
of strand breaks and recruit repair proteins (63-65).

PARP as a Chromatin-Remodeling Protein

A second category of biological function for PARPs is their role in chromatin
remodeling. MARylation and PARylation of histones were observed as early as 1980 (66,
67). PARP was soon observed to participate in the relaxation or decondensation of
chromatin structure (68-71). The addition of a high-molecular-weight, negatively
charged polymer to histone proteins loosens the tightly packed structure of chromatin
by electrostatic repulsion, promoting the access of chromatin-remodeling factors (68).
PARP was shown to participate in puffing in Drosophila, a process which requires the
loosening of chromatin structure, promoting remodeling and facilitating transcription (72).
Not only PARylation but also MARylation has unique roles; for example, MARylation of
histone H3 promotes the access of p300, leading to cellular proliferation through the
B-catenin pathway (73). Changes in nucleosome structure due to PARP binding and
PARylation were shown to lead to high gene transcription levels and could produce, for
example, a strong inflammatory response due to recruitment of nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-«B) at the interleukin-18 (IL-18) and tumor
necrosis factor (TNF) promoters where PARP1 is constitutively associated (74). The
nucleosome-binding capability of PARP1 was shown to be key to its transcription factor
coactivator activity for certain loci (75) (see also “PARPs as Transcription Factor Coacti-
vators/Corepressors” below).
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PARP1 also participates in the recruitment of other proteins which modify chroma-
tin. Imitation switch (ISWI) is a target of covalent PARylation (76); PARylation down-
regulates ISWI function. Covalent PARylation of chromatin-remodeling proteins
functions to regulate their activity (76). One of the best-studied examples is
chromodomain-helicase-DNA-binding protein 1-like (CHD1L), also called amplified in
liver cancer protein 1 (ALC1). This protein functions to promote the relaxation of
chromatin at sites of DNA damage, a mechanism that is dependent on the formation
of a stable PAR-mediated intermediate formed by ALC1 and PARP1 (77). PARP1
activation mediates ALC1 activation through an allosteric mechanism (78, 79). This
activity is important for single-strand break repair (80-82). Direct remodeling of nucleo-
somes by PARylation was recently observed to facilitate transcription factor recruitment
and gene transcription (83).

Under certain conditions, PARP1 can also promote chromatin compaction and
transcriptional repression, through binding of specific domains to nucleosomes (84).
PARP1 can function both as a chromatin architectural protein and as a nucleosome
assembly factor, depending on whether the enzyme itself is automodified with PAR
chains. In the absence of NAD™", PARP is able to bind nucleosomes and condense
chromatin (85). Upon automodification and enzyme activation, the affinity of PARP for
nucleosomes is decreased and the chromatin structure is relaxed. In addition to histone
PARylation, PARP participates in histone chaperone and nucleosome assembly pro-
cesses (86).

PARPs as Transcription Factor Coactivators/Corepressors

A third category of biological function is for PARPs that act as transcription factors
or transcription factor-binding partners, where they serve as coactivators or corepres-
sors (87-95). For example, PARP1 regulates the function of several ubiquitous eukary-
otic transcription factors such as specificity protein 1 (SP1), Ets-1, p53, and nuclear
factor of activated T cells (NFAT) (87-95). PARP1 inhibits the negative elongation factor
(NELF) to enhance effective transcription by RNA polymerase Il (96). PARP6 assists in the
negative regulation of cell cycle progression as a function of the activity of its catalytic
domain (97). PARP7 participates in the negative feedback regulation of the aryl-
hydrocarbon receptor (AHR) signaling pathway (98). Additionally, PARP7 has been
shown to structurally modify and coactivate liver X receptors « and 3, which are
important regulators in lipid and glucose metabolism, as well as inflammatory path-
ways. This has established the protein’s function as a regulator of nuclear transcription
factors (98, 99). Similarly, PARP10 and PARP14 both function as regulators of gene
transcription (100-103). PARP9 and PARP10 both modulate transcription and partici-
pate in the DNA damage response (103-105). A role for PARP1 in cotranscriptional gene
splicing has been identified (33).

PARPs also interact with other players in epigenetic processes. Histone acetyltrans-
ferases (HATs) and PARPs were observed to cooperate in regulating transcription (106).
For example, upon PARP inhibition, a global decrease in histone acetylation was
observed. This was found to be due to an increase in histone deacetylase (HDAC)
activity. Further, PARP1 positively regulates the transcription of the HATs p300, CREB-
binding protein (CBP), and PCAF; p300 and CBP are also PARylation substrates (107,
108). In addition, PARylation has been observed to correlate with the downregulation
of acetylation levels (109).

An interaction between PARylated PARP in chromatin and HDACs is believed to be
required to maintain HDAC activity and thus a balanced H3 acetylation level. This
correlates with physical interactions with HDACs that were previously observed (110).
Similarly, PARP14 has also been described as a transcriptional coactivator/corepressor
that partners with HDACs to facilitate Stat6-dependent transcription in response to IL-4
(102). In addition, PARP1 interacts with and regulates DNA methyltransferase 1 (111)
through PARylation of the histone demethylase lysine-specific demethylase 5B (KDM5B)
(112). This interaction can regulate the expression of specific genes, for example,
preventing the methylation of CCCTC-binding factor (CTCF) promoter sites (16).
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New functions within and outside these categories continue to be discovered.
Recent proteomic work has identified ADP-ribosylation substrates, which is useful for
understanding the metabolic pathways involving PARPs (113-117). The results of these
studies suggest that PARPs regulate many more biological functions than have been
identified to date (113). Among the novel functions identified for this family of enzymes
are their roles in host-pathogen interactions. Some of the most recent findings are
discussed below.

PARPs IN HOST-PATHOGEN INTERACTIONS
PARPs in Antiviral Responses

A major advance in the involvement of PARPs in antiviral responses was the
identification of PARP13, also known as the zinc finger antiviral protein or ZAP1, as an
antiviral factor. PARP13 targets both RNA and DNA viruses, including influenza virus,
alphavirus, filovirus, herpesvirus, and HIV (118-123). Its mechanisms of action include
the induction of interferon (IFN) signaling through interaction with retinoic acid-
inducible gene | (RIG-I) and other interferon-stimulated genes (ISGs) (123-126). PARP13
also interacts with the Moloney leukemia virus 10 homologue (MOV10) RNA-induced
silencing complex RNA helicase, inhibiting retrotransposition and retroviruses. Another
mechanism involves the physical interaction of PARP13 with argonaute proteins to
target them for ADP-ribosylation (127), thus activating antiviral genes that are silenced
via the RNA interference (RNAi) machinery under normal conditions (119). PARP13
recruits the exosome and the deadenylase poly(A)-specific RNase (PARN), as well as the
5'-3" degradation machinery to degrade viral RNAs (121). Figure 2 summarizes several
currently known antiviral functions of PARPs.

Further studies showed that PARP13’s roles in the cell are not limited to participat-
ing in the antiviral response. The protein targets both viral and host transcripts,
resulting in the induction of apoptotic pathways (degradation) and inhibiting viral
replication (121, 123, 126). PARP13 is therefore considered to have specific roles in
cellular mRNA decay (128).

An orthologous protein that shares sequence similarity with PARP13 but is catalyt-
ically active is PARP12. PARP12 shares some of the observed roles of PARP13 in RNA
decay and in the antiviral response. Like PARP13, it recognizes specific sequences in
viral RNA and DNA and degrades retroviral RNA (121, 122, 125). Both proteins contain
zinc finger domains in the N-terminal region. Recognition of RNA by these nucleic
acid-binding domains is required for antiviral activity (129, 130). The structure of these
domains has been solved and showed unusual, CCCH-type zinc fingers with cavities
that could bind RNA in a looped conformation (130).

The RNA decay pathways mediated by PARP12 and -13 are an important mechanism
of host cell defense but not the only mechanism involving PARPs. At least eight human
PARPs have demonstrated antiviral activity (identified in Table 1). Another mechanism
that has been demonstrated is the specific interaction of PARPs with viral proteins to
promote proteasomal degradation. PARP1 associates with the herpesvirus RTA protein,
which acts as a molecular switch to suppress lytic replication (131). PARP1 is corre-
spondingly downregulated during lytic replication (131-134). PARP1 is additionally
targeted for ubiquitination and proteasomal degradation by the viral processivity
factors (PF-8) and open reading frame 59 (ORF59), which has the effect of promoting
lytic replication (133).

PARP10, -12, -13, and -14 are all induced by interferons, and all can inhibit viral
replication (135, 136). PARP7 and PARP10, which are MARTs, are capable of translation
inhibition. These proteins form complexes with ribosomes that are mediated by their
N-terminal RNA-binding domains (137). Translation inhibition prevents viral growth by
stopping viral protein synthesis. The finding that the induction of PARP10, -12, -13, and
-14 can result in the inhibition of virus replication is consistent with previous results
supporting the importance of PARPs in the inhibition of viral replication (135, 136).

PARP12 is induced by RNA virus infection and also inhibits cellular translation. The
long isoform of PARP12, containing the PARP catalytic domain, rather than the short
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a second exoribonuclease known as XRN1 initiates the degradation of the 5’ end of the sequence (7). This pathway results in the degradation of viral RNA from
both the 5" and 3’ ends of the sequence (8). (B) Some of the roles of other PARP family members following the infection of a host cell by a RNA virus. Following
replication, PARP12 has also been shown to degrade viral RNA. In addition, the presence of viral RNA in the cytoplasm activates protein kinase RNA-activated
ISGs which initiate the production of stress granules, where PARP5, -12, -13, -14, and -15 can be found. These PARPs function to modify other proteins such
as the argonaute proteins, G3BP1, and TIA-1. In the cytoplasm, they also act to modify proteins by PARylation and are thought to function as scaffolds to recruit
other RNA-binding proteins. (C) Immune responses following the infection of a host cell by two DNA viruses. PARP1 has been shown to posttranslationally
modify Epstein-Barr nuclear antigen 1 (EBNA1) which modifies its dyad conformation. PARP1 binds to the terminal repeat sequence of Kaposi's sarcoma
herpesvirus (KSHV), resulting in the inhibition of viral replication (133, 638, 639).

isoform was required for this antiviral activity, which was active against positive,
negative, and ambisense RNA viruses (135). Since this mechanism appears to involve
catalytic activity and/or the catalytic domain, it may be separate from the RNA decay
functions of the protein.

Another important antiviral mechanism involves the formation of cellular stress
granules (SGs). The introduction of viral RNA into the cytoplasm results in the activation
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of protein kinase RNA (PKR)-activated SGs and the production of these membraneless
organelles, which assist in arresting proviral cellular processes such as translational
pathways. These organelles also regulate mRNA stability and have antiviral functions
(reviewed in reference 138). Viruses use various strategies to disrupt or block stress
granules; for example, Ebola virus inhibits SG formation (139), influenza virus sequesters
double-stranded RNA (dsRNA) to prevent SG initiation (140), and poliovirus 3 C pro-
tease cleaves a major SG protein, Ras GTPase-activating protein-binding protein 1
(G3BP1) (141). The RNA-binding PARP12 and -13 are found in stress granules, where
PARP12 is responsible for MARylation of various proteins such as the argonaute
proteins, G3BP1, and TIA-1 (36). G3BP1 MARylation promotes stress granule nucleation
(36). PARylation controls the sequestration of argonaute 2 (AGO2), leading to the
modulation of microRNA silencing (36). PAR is able to nucleate phase transitions of
RNA-binding proteins by initiating the liquid demixing process that is required for the
formation of membraneless organelles (142, 143). PARP5a, -7, and -15 have also been
localized to stress granules (36). Along with PARP12 and -13, PARP5a, -14, and -15 were
suggested to have regulatory roles in the production and maintenance of stress
granules (36). This is illustrated in Fig. 2B. Poly(ADP-ribose) glycosylase (PARG) also
localized to SGs, and its overexpression inhibited SG formation, again suggesting a key
role of PAR in SGs (36).

Several other PARPs have been identified to have antiviral functions. PARP14 has an
active role in the development of T cells and B cells. This process is initiated by
interleukin-4, which stimulates differentiation of Th2 cells, resulting in the ADP-
ribosylation of HDACs. The deacetylation of chromatin allows the transcription of genes
coding for immune cell production (102). PARP9 is a binding partner of Deltex 3-like, an
E3 ubiquitin ligase that ubiquitinates histone H4 and protects cells against DNA
damage. In the presence of its binding partner, PARP9 MARylates ubiquitin, preventing
E3 ligase activity and providing regulation of the complex (46). The PARP9-Deltex 3-like
complex also activates signal transducer and activator of transcription 1 (STAT1) and
ubiquitinates histone proteins to promote the expression of a subset of interferon-
stimulated genes, thereby stimulating the innate immune response. This complex also
binds to viral 3C proteases and ubiquitinates them for degradation (144).

Phylogenetic analyses also support a role of PARP in antiviral defense. An analysis of
PARP mutation rates showed positive selection in the catalytic domains of PARPs,
suggesting a connection between the antiviral response and the activity of multiple
PARPs, which is indicative of immune system defense (145, 146).

In the presence of DNA damage, PARP1 is responsible for the majority of cellular
PARP activity (50, 58, 147, 148). Perhaps not surprisingly, this enzyme also performs
antiviral functions. These occur through several mechanisms.

The release of viral contents into a cell initiates the host cell immune response,
activating proapoptotic factors such as p53. Some viruses, such as Kaposi's sarcoma
herpesvirus (KSHV), inhibit the action of p53, arresting apoptosis through a mechanism
involving the ORF8 protein (149). PARP1 binds the terminal repeat (TR) sequence of
KSHYV, resulting in the inhibition of viral replication (Fig. 2C) (133).

Another mechanism takes advantage of PARP1’s function as a chromatin-binding
protein. PARP1 represses the expression of retrotransposons in Drosophila and of
retroviruses in avian cells. This repression is mediated by HDACs and DNA methylases
(150). Incorporation of PARP1 into chromatin causes chromatin compaction and tran-
scriptional repression, which leads to retrotransposon silencing and the induction of
heterochromatin. Upon activation of PARP1, the enzyme auto-PARylates and dissoci-
ates, leading to transcriptional activation and chromatin decompaction. Since other
PARP family members also interact with HDACs (102), this may represent a common
mechanism in the PARP family.

In a related manner, PARP1 has a role in HIV DNA integration. PARP1 is incorporated
into nucleosomes in a manner that requires the N-terminal DNA-binding region and the
interaction of the C-terminal region with histone proteins (151). PARP1 participates in
HIV-1 long terminal repeat function, binds to HIV trans-activation response element
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(TAR) RNA, and is required for efficient HIV-1 integration (152-154). Thus, by the same
mechanism PARP1 can participate in a proviral or antiviral function, depending on the
stage of the infectious cycle of the virus.

PARPs in Proviral Responses

In addition to performing antiviral functions, other cases are known in which PARPs
are recruited by viruses to perform essential functions. For example, Epstein-Barr
nuclear antigen 1 (EBNA1) of Epstein-Barr virus (EBV) is posttranslationally modified by
PARP1, which leads to a remodeling of proteins at the dyad symmetry (DS) element
(155) (Fig. 2C). PARP1 is believed to serve a dual role, both preventing DNA damage and
regulating the efficiency of oriP and copy number and the replication efficiency of EBV
episomes, thus contributing to the maintenance of the virus (155).

The nucleocapsid protein of porcine reproductive and respiratory syndrome virus
(PRRSV) binds to PARP1, and the interaction is critical for viral replication, since the use
of a PARP inhibitor led to inhibited viral growth (156). In an intriguing parallel,
Grunewald et al. have shown that the nucleocapsid proteins of both «- and
B-coronaviruses are MARylated during infection (157). The function of this modification,
and whether it is pro- or antiviral, is currently unknown. Adenoviral core proteins were
shown to be ADP-ribosylated, and the use of PARP inhibitors led to greatly reduced
infectivity, suggesting a role for the modification in virus decapsidation (158). PARP1 is
additionally required for efficient activity of both the HINT and H5N1 influenza virus
RNA polymerases (159). One study suggests that a poly(ADP-ribose) glycohydrolase
(PARG) isoform is degraded as a result of a gene product of herpes simplex virus 1
(HSV-1), which is another indication that PARylation may be beneficial to virulence
(PARG counteracts PARylation) (160). In addition, inhibiting PARP activity also inhibits
the replication of several types of viruses, suggesting that in these cases, PARylation
assists, rather than attenuates, viral replication. This has been demonstrated in several
families of viruses, such as herpesviruses, adenoviruses, and arteriviruses (156, 158, 160).

An intriguing role for extracellular PAR was identified by the group of Mitchison
(161). PAR was shown to activate cytokine release by macrophages, which is associated
with activation of innate immune responses. PAR could be recognized by Toll-like
receptors 2 and 4, and inhibition of these receptors prevented cytokine release. Hence,
extracellular PAR is a strong proinflammatory signal. This manner of signaling is specific
to the polymer, since monomeric ADP-ribose did not elicit a response. Since PAR is
primarily an intracellular molecule, it remains to be determined how the extracellular
PAR is produced. An extracellular ADP-ribosyltransferase (ART) has previously been
identified on T cells, which might function as the source (162). Alternatively, PAR might
be released by cells after necrotic cell death.

Several RNA viruses encode macrodomains, which have been described as the
“readers and erasers” of ADP-ribosylation (163). These domains recognize and reverse
MARylation and PARylation. For example, a macrodomain is conserved in coronaviruses
and alphaviruses, as well as other viruses from the Hepeviridae and Togaviridae families
(164-166). Viral macrodomains can remove ADP-ribose or PAR from various protein
substrates (167, 168). In addition, PARP10 and PARP14 were induced in response to
interferon alpha and to lipopolysaccharide (LPS), suggesting that MARylation is relevant
to host-pathogen interaction (169). Since PAR is a regulator of multiple signaling
pathways, conserved viral macrodomains are likely used to interfere with one or more
host cell antiviral defense mechanisms. Indeed, these proteins mediate resistance to
interferon signaling (170), promote virulence, and suppress the innate immune re-
sponse during coronavirus infection (171-173). Specific protein substrates have been
identified for a few macrodomains (169, 174-177), but many remain unidentified to
date. Some macrodomains have divergent biochemical activities, such as nucleic acid
binding or protein/protein interaction, suggesting that these readers and erasers, like
PARPs, are multifunctional (168, 178-180).

Due to the fact that the activity of PARPs has been shown to be both pro- and
antiviral, it is clear that a simple definition of the role of PARPs in the response to viral
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infection is not sufficient. There are few known enzyme-specific inhibitors of PARPs,
which impedes our ability to understand how they respond to viral infections; thus,
future work would involve the identification of specific inhibitors for individual PARP
family members. Recently, exciting progress has been made in this area (reviewed in
reference 181).

PARP and Bacterial Pathogens

Activation of PARP has been observed upon infection of eukaryotic cells by bacterial
pathogens. For example, the group A Streptococcus (GAS) pathogenicity island encodes
streptolysin (SLO) and NAD™ glycohydrolase. SLO pore formation induced PARP acti-
vation, while NAD™* glycohydrolase activity modulated this PARP activity (182). PARP
activation has also been observed in Helicobacter pylori infection (183). Bacterial
infection was shown to promote PARP activation, through pathways related to inflam-
mation (183, 184).

Interestingly, only a few bacteria have functional PARylation systems, while many
have PAR-binding domains, PAR-degrading enzymes, and ADP-ribosylating toxins.
These proteins often form operons that may constitute effector systems and may
include other domains, such as SLOG, Nudix, and NADAR domains. In parallel to the
case for eukaryotic cells, these systems could serve as a source of ATP or intracellular
signaling system (185).

Perina et al. performed a detailed analysis of the distribution of enzymes of PAR
metabolism in bacteria with sequenced genomes and showed that PARPs are present
in six of the 30 known bacterial phyla, where they were probably acquired by horizontal
gene transfer (12). Of these, one has been characterized in vitro, namely, the PARP from
Herpetosiphon aurantiacus, which was demonstrated to synthesize polymers (186). The
roles of these systems are diverse. In nitrogen-fixing bacteria, the MARylation modifi-
cation regulates nitrogenase (reviewed in reference 187). In Bacillus subtilis and Strep-
tomyces griseus ADP-ribosylation contributes to sporulation (188, 189), and in Strepto-
myces coelicolor it regulates antibiotic production (174). The S. coelicolor SCO5461
protein was experimentally demonstrated to carry out MARylation.

Plant PARPs

As in animals, plant PARPs are important for DNA damage repair (190-193). Plant
PARP2 makes the greatest contribution to DNA repair pathways (194). Arabidopsis
PARP1 and PARP2 interact physically, and PARP2 is the most important of these in
pathogen-induced DNA damage repair and basal resistance (194). Plant PARPs also
participate in transcriptional regulation (191, 195).

PARPs also play a key role in responding to abiotic stress and to infection. For
example, early studies using PARP inhibition showed that PARP is involved in cell death
triggered by DNA damage or oxidative stress (196). PARP was shown to affect stress
tolerance (191). Silencing of PARP genes altered stress signal transduction (197).
Oxidative stress, drought, and high-light resistance is increased by the knockdown
of PARP1 and PARP2 or by the application of PARP inhibitors (191, 198). Thus, the
roles of PARPs in responding to abiotic and biotic stress signals appear to differ.
Surprisingly, PARP knockout plants were recently found to have constitutive PARP
activity and did not exhibit altered stress responses (199). It is possible that this
activity could be mediated by the SRO (similar to RCD-one) or RCD (radical-induced
cell death) proteins, which are PARP orthologues that occur only in plants (described
below). PARP3, in contrast, can be induced by several factors, particularly during
development of the seed (200). PARP3 is a vital component in the storability and
viability of the plant seeds (201). Chemical inhibition of PARPs was shown to improve
stress tolerance and plant growth, and this correlated with changes in the levels of
stress-related metabolites such as anthocyanins (202).

PARP was induced upon Pseudomonas infection of Arabidopsis (203, 204). Further
work showed that PARP inhibition disrupted lignin and callose deposition, which
comprise part of the innate immune response, and that pathogen infection activated
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PARylation reactions (203). PARylation was shown to regulate genes involved in im-
mune defense (205). Correspondingly, PARPs may be required to repair pathogen-
induced DNA damage (206). Most recently, Feng and coworkers demonstrated that
PARP2 participates in important reactions with DAWDLE (DDL), a forkhead-associated
(FHA) domain protein. The PARylation-dependent interaction between PARP2 and DDL
is essential to the function of DDL in plant immunity (207).

Pathogens in turn utilize MARylation and PARylation to antagonize plant cell
defenses. Thus, MARylation of plant proteins by bacterial virulence factors was shown
to interfere with the plant immune response, especially in pattern-triggered immunity
(PTI) signaling pathways (208). For example, the Pseudomonas syringae type lll secretion
system (T3SS) produces ADP-ribosyltransferase effectors that act on plant RNA-binding
proteins and kinases (209, 210). The modification of the RNA-binding protein GRP7
inhibits protein function in binding to pattern recognition receptor transcripts (210,
211). HopF2 MARYylates kinases in the PTI signal transduction pathway, inhibiting the
microbe-associated molecular pattern (MAMP)-induced response. A third effector,
AvrRpm1, is predicted to have a PARP-like fold, but its transferase activity is unclear and
it may serve to target PARP substrates or binding partners through molecular mimicry
(212). Genes encoding other PAR-related functions such as PARG and Nudix hydrolases
were also upregulated in response to MAMPs, suggesting the need for a programmed,
regulated immune response involving PARPs and the need to avoid excessive con-
sumption of NAD™ (204).

The RCD (radical-induced cell death) and SRO (similar to RCD-one) proteins are PARP
orthologues that are found only in plant cells. These proteins contain ART core domains
but lack the HYE catalytic triad and are predicted to be inactive; however, this remains
to be verified (213). For example, RCD1 does not have detectable NAD binding or PARP
activity (213). However, PARP activity has been reported for SRO1 (214). These proteins
are regulators of stress responses and plant development (199, 215, 216). RCD1 is
upregulated in response to light stress (217). Further, RCD1 interacts with multiple plant
transcription factors that control key aspects of plant stress. For example, dehydration-
responsive element-binding protein 2 A (DREB2A) is an Arabidopsis transcription factor
that is involved in the stress response to salt and drought (218, 219). RCD1 binds and
destabilizes this transcription factor. Under certain conditions, RCD1 is degraded to
increase DREB2A function (219). Arabidopsis NAC transcription factors ANAC013 and
ANACO046 regulate mitochondrial function (220). RCD1 appears to function in activating
a gene expression program of antioxidant response (221).

The SRO1 protein from Oryza sativa (rice) and an RNA-binding protein, OsRBD1,
conferred tolerance to multiple stresses in a yeast model system (222). These proteins
have a domain structure similar to that of human PARP11 in that they contain a WWE
domain. The SRO proteins contain an additional, plant-specific domain that is impli-
cated in transcription factor interaction (213, 222). This RST domain has also been
identified in the TATA box-binding-protein-associated factor 4 (TAF4) protein, which is
found in transcription initiation complexes of eukaryotes (213). Interestingly, the O.
sativa SRO1c protein mutant exhibited an expression profile and transcription factor
interaction profile distinct from those of an RCD1 mutant and also showed impaired
cold tolerance (223). Thus, the specific functions of these proteins appear to be quite
different from those of PARPs, despite them sharing a common fold of the catalytic
domain.

Remaining Questions

Major progress has been made in identifying the involvement and functions of
PARPs, PARylation, and MARylation in the response of cells to pathogens. New ques-
tions and challenges are opening up in turn. One new hurdle is the identification of
PARP substrate proteins, which would provide insight into the signaling pathways that
are activated in response to pathogens. Several experimental protocols have been
developed (48, 96, 224-226) and more than 2,000 ADP-ribosylation substrate proteins
identified to date, and this area is in rapid development (113-117). Recently, new
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FIG 3 lllustration of selected pathways involved in the stimulation or inhibition of inflammation, which either involve or are related to
PARP1. (A) Schematic demonstrating the role of PARP1 in the activation of NF-«B. For activation to occur, there is first binding between
PARP1 and two acetyltransferases, p300 and CREB-binding protein (CBP). This binding interaction allows for the acetylation of PARP1 at
select lysine residues. The acetylation of PARP1 facilitates a second binding interaction between p300 and the p50 subunit of NF-«B,
resulting in the activation of NF-«B. Once activated, NF-«kB can bind to DNA and facilitate the transcription of inflammatory mediators
(640). (B) Activation of T cells initiates the dephosphorylation of NFAT by calcineurin, which allows NFAT to move from the cytoplasm into
the nucleus. Inside the nucleus, NFAT can bind with PARP1, initiating poly(ADP)ribosylation and its interaction with DNA, resulting in the
transcription of IL-2. The exit of NFAT from the nucleus back into the cytoplasm is assisted by kinases. The reversibility of PARylation is
shown by the depiction of PARG removing the PTM (255, 641). (C) Interaction of NF-«B and SIRT1, both of which are transcription factors
shown to be regulated by PARP1. The proinflammatory function of NF-«B is mitigated by a binding interaction with SIRT1, which
deacetylates NF-kB, resulting in the downregulation of TNF-«, which has been shown to have an active role in the progression of
osteoarthritis (275, 388, 642).

insight has been gained into the nature of PARylation consensus sequences and motifs,
which to date has been elusive (96, 227). Further work is required to determine spatial
and temporal factors controlling substrate protein PARylation. In addition, we know
little about how PARP interactions with substrate proteins and other binding partners
are mediated and the ultimate fate of these complexes in the cell. How PARP activity
is disrupted in an infected cell can contribute to changes in NAD homeostasis (reviewed
in reference 228 and described further below).

PARPs IN INFLAMMATION AND IMMUNITY

PARPs play major roles in inflammatory pathways, promoting inflammatory re-
sponses through the expression of cytokines and stimulation of proinflammatory signal
transduction pathways. The role of PARP was first established by observing the atten-
uation of inflammation using pharmacological inhibition of the enzyme (229, 230).
Since then, the link between PARP activity and inflammation has been studied exten-
sively. PARP1 regulates the expression of proinflammatory cytokines, enzymes involved
in the progression of inflammation, and other proinflammatory gene products (231-
234). An overview of inflammatory pathways is presented in Fig. 3.

The proinflammatory actions of PARP1 play roles in pathological processes. PARP1
plays an essential role in the progression of nephritis by the induction of proinflam-
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matory cytokines (234) and can participate in the progression of atherogenesis by
influencing plagque inflammation (232). Some cytokines, such as IL-6, in turn activate
PARP. By stabilizing mRNA and by acting as a transcriptional activator, PARP1 has been
shown to play a role in the regulation of inflammatory gene expression (235). It was
shown that PARP1 knockout (PARP1~/7) mice were protected against several inflam-
matory disorders (236, 237). Oliver and coworkers demonstrated that when the PARP1-
NF-kB binding interaction was inhibited, mice that were PARP1 deficient were less
susceptible to inflammation initiated by lipopolysaccharide (LPS) (238).

PARP overactivation leads to inflammation in several tissues; for example, PARP1
activation by DNA damage caused by oxidative stress is believed to play a role in
diabetic neuropathy (239, 240). The roles of PARP in inflammation have been studied
in several tissues, and its relationship to cancer and obesity has also been found.
Induction of inflammation by infection with viruses, fungi, and parasites or by traumatic
injury and stroke has been observed (241, 242). PARP hyperactivation has been
identified in several central nervous system disorders, including neuroinflammation,
neurodegeneration, and ischemia. Extracellular PAR, such as could be released by
necrotic cells, was identified as a damage-associated molecular pattern that stimulates
inflammatory signaling (161).

PARP as a Transcriptional Coactivator of Inflammatory Pathways

As described above, a major role of PARP in the cell is to act as a transcriptional
coactivator/corepressor (87-95). PARP1 regulates the function of transcription factors
involved in inflammatory processes, such as activating protein 2 (AP-2), yin yang 1
(YY-1), transcription enhancer factor 1 (TEF-1), octamer-binding transcription factor 1
(Oct-1), Myb-related protein B (B-MYB), specificity protein 1 (SP1), Ets-1, p53, and NFAT
(87-95). PARP1 also acts as a coactivator of NF-kB, leading to the activation of
inflammatory signaling (243-245).

NF-«B can be activated by the action of PARP1 through various pathways. Under
inflammatory conditions, the activation of NF-«B is initiated by the interaction of PARP1
and two transcriptional coactivators that act as histone acetyltransferases (HATSs),
namely, CREB-binding protein (CBP) and p300. The formation of this complex results in
the acetylation of PARP1 at specific lysine residues. The acetylation of PARP1 is required
for the PARP1-CBP-p300 complex to interact with the p50 subunit of NF-kB. The
binding between p300 and p50 activates NF-«B, initiating the transcription of proin-
flammatory cytokines, chemokines, transcription factors, and other inflammatory me-
diators (Fig. 3A) (110, 246, 247).

The interaction of PARP1 with SP1 appears to be proinflammatory, since the
PARylation of SP1 resulted in its reduced binding to its consensus sequence. SP1 is
normally considered to promote the transcription of anti-inflammatory mediators.
However, the interaction with AP-2 could inhibit or activate transcription depending on
the conditions (248). In contrast, the high-mobility-group box 1 protein (HMGB1) was
shown to be highly PARylated, and this modification enhanced its ability to prevent
efferocytosis, an important step in resolving inflammation (249). PARP1 was shown to
localize to the promoters of genes responsive to NF-«B. Upon LPS stimulation, PARP1
undergoes cleavage and release from the promoters, increasing the rate of transcrip-
tion (250). In Drosophila, a specific protein, Charon, directs the RelB subunit of NF-«B to
promoters through a specific interaction with PARP1 (251). This interaction is required
for the transcription of genes encoding antimicrobial defense peptides.

PARP1 was shown to favor the expression of inflammatory chemokines such as IL-13
and TNF-a and enzymes involved in inflammation such as inducible nitric oxide
synthase (233, 234, 245, 252). For example, in a model of allergic airway inflammation,
PARP was required for the production of Th2-type cytokines such as IL-5, IL-10, and
granulocyte-macrophage colony-stimulating factor (GM-CSF) (253). PARP1 plays an
important role in the inflammatory response in the brain by regulating the transcription
of genes linked to inflammation (93). In addition, PARP induces the expression of cell
adhesion molecules such as selectins that favor the influx of white blood cells to tissues.
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Thus, PARP is required for the expression of adhesion molecules such as selectins and
vascular cell adhesion molecule (VCAM) in atherogenesis (232). Also, PARP1-deficient
mice undergo significant transcriptional reprogramming in the colon, with a protective
effect in a model of colitis. Analysis of the transcription response showed that the most
common gene ontology (GO) types regulated were proteolysis, protein transport, and
localization, suggesting that PARP has other functions besides a direct effect on
transcription (254). These observations raise the question of tissue-specific PARP func-
tions.

PARP1 also has a proinflammatory function in activated T cells. The interaction of
nuclear factor of activated T cells (NFAT) and PARP1 facilitates the transcription of IL-2
(255). Several studies have shown that this process is dependent on the state of
phosphorylation of NFAT (255) (Fig. 3B). In inactive T cells, NFAT is heavily phosphor-
ylated and resides in the cytosol. When T cells are activated, calcineurin facilitates the
dephosphorylation of NFAT, allowing NFAT to enter the nucleus. In the nucleus, NFAT
can bind consensus sequences, either alone or along with other transcription factors.
This interaction occurs with the help of PARP1 and the PARylation of NFAT. As a result,
PARP1 aids in the transcription of IL-2. Nuclear kinases facilitate the rephosphorylation
of NFAT, allowing it to reenter the cytosol.

Other PARP enzymes also play roles in inflammatory processes, some of which may
be anti-inflammatory (Table 1). In addition to its antiviral functions in the regulation of
stress granule production and maintenance, PARP5b has a proinflammatory function in
the progression of cherubism (256). PARP16 participates in the unfolded-protein re-
sponse (UPR) initiated by the endoplasmic reticulum. PARP16 ADP-ribosylates several
proteins and prevents the activation of activating transcription factor 6 (ATF6), thereby
linking PARP16 to inflammation (257, 258).

In contrast, PARP10 is a repressor of NF-«B signaling, mediated through binding to
K63-linked polyubiquitin and its substrate NEMO (259). PARP10 also acts on a number
of other cellular substrates, including glycogen synthase kinase 3B (GSK3B) and other
kinases (175).

PARP9, PARP14, and PARP15 form a family originally identified as proteins that were
overexpressed in chemotherapy-resistant diffuse large B-cell lymphoma (260). These
proteins have been termed the macro-PARPs or the B-aggressive lymphoma (BAL)
proteins (260). PARP14, a mono(ADP-ribosyl)transferase, is a specific cofactor of STAT6
that is important in B-cell and T-cell responses. PARP14 regulates the IL-4-mediated
proliferation and survival of B cells and is highly expressed in Th17 cells. Inhibition of
this protein results in reduced Th17 cell differentiation in a model of allergic airway
inflammation (261-263). PARP14 influences the class distribution and affinity repertoire
of antibodies in mice and is involved in helper T-cell development (261, 264).

Thus, at least six of the currently known 17 PARPs have demonstrated roles in
inflammatory processes, through either participating in transcriptional regulation or
other mechanisms.

PARP, NAD+ Metabolism, and Inflammation

The PARylation and MARylation reaction consumes NAD™* to produce nicotinamide
(NAM) and a modified protein. Hence, the activation of PARP has a major effect on
levels of NAD™ in the cell. Changes in NAD™ levels can lead to changes in cellular
metabolism, homeostasis, and even cell death (reviewed in reference 265). Consump-
tion of excess NAD* and ATP upon hyperactivation of PARP was originally thought to
lead to cellular necrosis through a cell death process termed as parthanatos (266-268).
In this mechanism, PAR acts as a signal to trigger cell death via the release of
apoptosis-inducing factor (AIF) from mitochondria (269-272). This is followed by the
movement of AIF to the nucleus, which leads to the degradation of genomic DNA and
cell death (269-272). NAD™* levels decrease to as much as 20% to 30% of normal upon
DNA damage (273, 274), and conversely, NAD* doubles in PARP1 knockout mouse
tissue (275). However, recent work has shown that PAR-dependent energy depletion in
fact occurs through inhibition of hexokinase, and therefore glycolysis, by PAR produced

March 2019 Volume 83 Issue 1 e00038-18

Microbiology and Molecular Biology Reviews

mmbr.asm.org 15


https://mmbr.asm.org

Brady et al.

by activated PARP1 (276). This inhibition occurs through a specific PAR-binding motif
(PBM) on hexokinase. Despite debate over the exact mechanism of parthanatos, it is
clear that PARP activation, the activities of other enzymes in NAD™ metabolism, and
cellular NAD* levels must all be regulated to avoid deleterious effects.

The importance of NAD* homeostasis was originally observed in pellagra, a defi-
ciency of NAD™ precursors (277; reviewed in reference 228). NAD ™ serves as a coen-
zyme for numerous enzymes in reduction-oxidation reactions and as an electron carrier
in cellular intermediary metabolism. Hence, the loss of NAD+ homeostasis can lead to
unfavorable changes in the cell. The multifaceted roles played by NAD* in metabolism
have been established through the breadth of its function in various biological path-
ways (reviewed in reference 278). Decreased cellular NAD™ levels have been associated
with aging (279-283), consumption of a high-fat diet (275, 284), diabetes (279, 285),
and stress. These effects are physiologically deleterious, leading to the degeneration of
muscle cells (286). The repletion of NAD* by providing precursors has been shown to
be beneficial in several pathogenic conditions. Nicotinic acid (NA) was shown to be
effective in treating dyslipidemia (287); however, side effects were noted, and new
derivatives have been developed. Increased NAD™ levels provided protection against
ischemia (288-290) and against neurodegeneration (291). NAM treatment was shown
to benefit in a rodent model of obesity and diabetes (285). NAM could also inhibit
oxidative damage induced through B-amyloid peptide (292, 293). Repletion using
nicotinamide riboside (NR) correlated with improved muscle function, a reduction in
protein PARylation, and reductions in inflammation and fibrosis in mouse and Caeno-
rhabditis elegans models of muscular dystrophy (294). NR treatment also improved
symptoms of diabetes and diabetic neuropathy in a mouse model (295). NR is currently
regarded as promising for therapeutics. It has been recently suggested that the key to
the selectivity of NAD™ metabolism is the compartmentalization of intermediates into
different subcellular compartments for storage until needed for NAD*-dependent
signaling pathways (278).

Similar effects are observed upon increases in PARP activity given that these
enzymes are NAD consumers. Thus, PARP1 activity increases with age and with a
high-calorie diet (275, 280, 296), and PARP1 knockout can protect against obesity in
mice (275), correlating with the effects of NAD™ levels. PARP7 activation reduced NAD™
levels and increased PARylation of proteins in liver tissue (297). Aberrant activation of
PARPs can play a role in the neurodegeneration observed in certain disorders involving
DNA damage.

In contrast, PARP inhibition increases NAD™ levels (275, 298) and protects against
obesity (275, 298, 299). PARP5 knockout mice had reduced fat and body weight (300)
or resistance to diabetes (301). PARP knockout in C. elegans led to an increase in life
span (296). PARP inhibition also upregulates mitochondrial biogenesis and the un-
folded protein response, which could contribute to the beneficial effects toward
metabolic disease (298).

Two other classes of enzymes consume NAD* and also strongly affect cellular
metabolism. The first is the sirtuins or SIR2 family, which are class Il histone deacetylase
enzymes that function to remove acetyl modifications and other acyl groups from
proteins using NAD™ as a cosubstrate (reviewed in reference 302). These enzymes act
on both histone and nonhistone proteins. They function to stimulate oxidative meta-
bolic pathways in mitochondria, improving resistance to oxidative stress (reviewed in
references 265 and 303). Through this mechanism, they favor increased life span in
multiple organisms, such as yeast, C. elegans, Drosophila, and mammals (304-310). Their
action benefits symptoms of inflammation and aging-related diseases such as cancer
and cardiovascular disease. In mammals, they hold a broad spectrum of biological roles
in cellular processes and pathways that can be attributed to the cellular localization of
the seven sirtuin family members. Through their influence on the cell cycle, apoptosis,
and metabolism, they have emerged as important regulators of cancer cell proliferation
and tumorigenesis (reviewed in references 311 and 312). Several sirtuin enzymes also
exhibit ADP-ribosyltransferase activity, which is less efficient than their deacetylase
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activity. The physiological importance of this enzyme activity has been debated, but it
may influence DNA repair (313) and enzyme activities (314). Microbial sirtuins have
been identified mainly in pathogenic bacteria and fungi and termed SirTMs or class M
sirtuins (315). This class of enzymes exhibit more efficient ADP-ribosylation than
mammalian sirtuins and may take advantage of this activity as part of a regulatory
response to oxidative stress, such as during engulfment by host cells (315).

In mammalian cells, SIRT1 is found predominantly in the nucleus to remove acyl
groups from histones and a number of cellular targets (316). The action of SIRT1 is
protective against osteoporosis, acting as a positive regulator of bone mass in mice
(317, 318). This may be mediated by forkhead transcription factors of class O (FoxO)
proteins (319) or under inflammatory conditions, through negative regulation of NF-«B
signaling (320, 321). In addition, SIRT1 action protects against other aging-related and
neurodegenerative diseases, including Alzheimer’s disease (322-326). Recently, protec-
tion against neurodegenerative diseases and promotion of stem cell differentiation
were reported (327-329). SIRT1 deacetylation of p53 protected against neuronal cell
apoptosis in a model of diabetic cognitive impairment (330). SIRT1 contributed to
memory enhancement in healthy animals and in Alzheimer’s disease models, through
the regulation of neurotrophic factors, enhancement of tau degradation, and additional
mechanisms (331).

SIRT1 function has also been shown to be strongly associated with cancer and
apoptosis (reviewed in reference 332). SIRT1 gene polymorphisms were shown to assist
in compensating for oxidative stress during aging (333), to affect gene expression in
cardiovascular disease (334), and to affect obesity, fat and cholesterol metabolism, and
high blood pressure (335-337).

SIRT2 can be found predominantly in the cytoplasm but is also present in the
nucleus during certain points in the cell cycle, where it deacetylates histone substrates
and cell cycle checkpoint kinases (338, 339). In mammals, this protein is highly
expressed in the brain (340). Like SIRT1, SIRT2 is upregulated during calorie restriction
and downregulated under conditions of energy excess (341, 342). Recent applications
to its function as a deacetylase of microtubules link it to aging brains and neuropro-
tective effects (343). In addition, SIRT2 acts to suppress inflammatory signaling through
NF-kB deacetylation. SIRT2 regulates several proteins important in metabolic regulation
and homeostasis, particularly lipid metabolism and regulation. SIRT2 suppresses adi-
pogenesis, inhibits adipocyte differentiation by deacetylating FoxO1, and stimulates
the degradation of ATP-citrate lyase, a key enzyme in hepatic lipogenesis (344-346).
There are also roles in insulin signaling and metabolism (340).

SIRT3 to -5 are localized primarily to mitochondria and have been implicated in
oxidative stress responses (347-350). SIRT3 acts as a tumor suppressor through the
regulation of reactive oxygen species (ROS) (351). SIRT3 also activates FOXO3a, a
regulator of ROS in the heart and negative regulator of cardiac hypertrophy (352). On
the other hand, SIRT3 was also shown to have an oncogenic role under some circum-
stances. SIRT3 is essential for maintaining mitochondrial function and is overexpressed
in head-and-neck squamous cell carcinoma (HNSCC) (353), where it contributes to cell
growth and survival (354, 355). SIRT3 may prevent cells from undergoing apoptosis
under stress conditions (356), antagonize p53 growth arrest (357), and induce resis-
tance to anticancer agents (358). A SIRT3 inhibitor was able to enhance apoptosis of
HNSCC cells (359), likely by disrupting the ROS balance, supporting SIRT3 as a useful
therapeutic target for this type of cancer.

SIRT4 and SIRT5 have multiple enzymatic activities; for example, SIRT5 cleaves
succinyl, malonyl, and glutaryl groups in preference to acetyl groups (360). SIRT4 was
shown to have lipoamidase activity that negatively regulates the pyruvate dehydroge-
nase complex (361, 362). Like SIRT3, SIRT4 may contribute to tumor suppression or
tumorigenesis depending on conditions. SIRT4 also participates in DNA damage re-
sponse pathways and contributes to genome stability, thus contributing to tumor
suppression (363, 364). However, SIRT4 was also shown to be involved in cellular stress
responses, is induced by stress, and contributes to cell survival and growth under stress
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conditions (365). In this manner, SIRT4 has been implicated in oncogenic transforma-
tion and may contribute to survival and drug resistance of cancer cells (365).

SIRT5 is specific for negatively charged acyl groups, especially succinyl, malonyl, and
glutaryl groups (360, 366). This activity regulates the activity of mitochondrial enzymes
such as the pyruvate dehydrogenase complex, succinate dehydrogenase, and carbam-
oyl phosphate synthetase 1 (367-369). This impacts diverse metabolic pathways such
as glycolysis and the urea cycle.

SIRT6 is localized in the nucleus, where it helps to maintain genome stability and
telomere function by histone deacetylation (370). Recent findings support its ADP-
ribosylation of PARP1 under oxidative stress to assist in the repair of DNA (313,
371-374). SIRT6 acts as a tumor suppressor and participates in genome maintenance
(370). SIRT6 is also able to cleave long-chain fatty acyl groups such as myristoyl and
palmitoyl, allowing it to regulate the secretion of tumor necrosis factor alpha (375).
SIRT7 resides in the nucleus and participates in transcription (376). This protein has
been identified as an oncogene through its activity in transcriptional repression (377),
association with the transcription factor ELK4 (371), and selective H3K18 deacetylation
activity, which has been linked to oncogenic transformation (371, 378-381) and ag-
gressive cancers (378, 379). SIRT7 participates in DNA double-strand break repair and is
involved in genome integrity maintenance and nonhomologous end-joining repair
(382). However, much of its catalytic activity may still be unknown. The breadth of
functions of this family of enzymes has made them promising drug targets.

PARPs and sirtuins regulate each other in a complex manner. PARP2 acts as a
transcriptional repressor of SIRT1 expression (275) and negatively regulates the SIRT1
promoter. By efficiently consuming NAD, PARP1 limits SIRT1 activity (275, 293, 383,
384). In contrast, SIRT1 inhibits PARP1 through its deacetylation activity and through
transcriptional regulation. Increased PARP activity was observed in SIRT1 knockout cells
(384, 385). PARP1 knockdown (pme-2 knockdown) in worms led to increased Sir2
activity as well as longer life span and increased NAD™ concentration (386). While
PARP1 is a transcriptional coactivator of NF-«B and favors inflammatory processes,
SIRT1 inhibits NF-«B activity by deacetylating the protein (387). SIRT1 interacts with
NF-kB, resulting in the deacetylation of the latter and in the inhibition of TNF-« (Fig. 3C)
(275, 388). SIRT1 and PARP1 are connected through their use of the substrate NAD™,
and both are able to modify histones. The two enzymes participate in antagonistic cross
talk due to their competition for the NAD™ substrate (383). Many cellular functions are
likely to be regulated by SIRT1/PARP1 reciprocal regulation.

The other important consumer of NAD* that strongly affects overall cellular NAD*
levels is the CD38/CD157 protein, an enzyme that produces the second messengers
ADPR and cyclic ADP-ribose (cADPR) from NAD™ (389). In contrast to sirtuins, whose
activity is affected by low levels of NAD*, CD38 plays an active role in depleting NAD™
(390). For example, cells overexpressing CD38 showed decreased [NAD*] together with
decreased expression of antioxidant proteins, likely due to reduced sirtuin activity (391).
As an effect of this metabolism, CD38 knockout mice showed improved resistance to
glucose intolerance and diet-induced obesity (392, 393). This correlated with increased
[NAD*] in multiple tissues and increased sirtuin activity (392, 394). The roles of ADPR
and cADPR as second messengers have been reviewed (395-397). CD38 is a multifunc-
tional transmembrane glycoprotein and, in addition to its role in producing cADPR, also
regulates Ca2™ flux in the cytoplasm (398, 399). CD38 participates in other signal
transduction pathways such as insulin secretion (400, 401). CD38 assists in B-cell
differentiation and leukocyte adhesion and proliferation (402, 403) and associates with
lipid rafts (404, 405).

CD38 expression has also been shown to correlate with aging. Overexpression of
CD38 in cancer cells leads to the development of senescence (406). CD38 inhibits the
function of SIRT3 in the mitochondria by affecting levels of NAD* (390). CD38 expres-
sion is induced by inflammatory cytokines and interferon (407, 408), which also increase
during aging (409-413), suggesting a possible reason for CD38 increase during the
aging process (414).
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As a result, CD38-inhibitory therapy is an area of interest for metabolic dysfunction
related to age (415). Specific CD38 inhibitors have been developed (416-420). Several
inhibitors were shown to have the ability to raise NAD levels and improve glucose
homeostasis and fatty acid metabolism in vivo (417, 420). CD38 was shown to play a
role in certain diseases related to aging, including Alzheimer’s disease (421).

CD38 is overexpressed on cells of some hematologic malignancies (422-426) and
has been proposed as a therapeutic target for myeloma and for T-cell acute lympho-
blastic leukemia treatment (405, 427). Recently, it was suggested that CD38 may be a
biomarker of resistance to certain cancer therapies, and it was effectively used as a
secondary target in combinational therapies for lung cancer (428). CD38-expressing
cells promoted tumor growth in a murine model of esophageal cancer (429). Its effect
on mitochondrial function led to an enhancement of proliferation and inhibition of
apoptosis in cervical cancer cells (430). Conversely, CD38 knockout led to suppression
of tumorigenesis in a lung cancer model (431), and CD38 overexpression was identified
in patient samples. This suppression occurred both in wild-type mice and in an
ARH1-deficient background; ARH1-deficient mice are already prone to tumor develop-
ment (described above).

A monoclonal antibody directed against CD38, termed daratumumab, has been
approved for the treatment of multiple myeloma (432). This antibody was originally
developed using a panel of CD38-specific monoclonal antibodies generated from
human antibody transgenic mice (433). The antibody exhibited high efficacy in an
animal model of multiple myeloma (434). CD38 has also been developed as a target for
positron emission tomography (PET) imaging using daratumumab antibody (435, 436).
Other antibodies, such as MOR202, a human antibody, and isatuximab, a humanized
antibody, are in various stages of clinical trials (437, 438). CD38 expression has also
been associated with HIV infection, where CD38 expression was noted on HIV-specific
CD8* cytotoxic T cells (439, 440), and with autoimmune disease (441), where clinical
applications are also possible.

NAD+* Metabolism and Infection

NAD™ is an essential cofactor and substrate for bacterial cellular metabolism, and
pathogenic bacteria have evolved to exploit NAD* and PARP pathways. Group A
Streptococcus (GAS) possesses a NAD* glycohydrolase that cleaves NAD™, yielding NA,
ADPR, and cADPR, which drastically decreases NAD* and ATP concentrations and leads
to cell death. This leads to a significant reduction in innate immune system responses,
and protects GAS from autophagy (442) and lysosome acidification (443), and leads to
a reduction in PARP activity. The reduction in PARP activity is believed to stimulate the
release of high-mobility-group box protein 1 (HMGB1) from the nucleus to the cytosol,
where it acts as an inflammatory mediator (444), is deposited in damaged tissues (445),
and contributes to necrosis. Conversely, NADase-negative GAS is also able to activate
PARP, by an unknown mechanism.

A few other bacterial pathogens also activate PARP upon infection. Thus, H. pylori
infection activates PARP by PARylation (183). H. pylori infection triggers apoptosis via
the caspase-independent AIF pathway (446) and programmed necrosis (447). Bacterial
infection was shown to promote PARP activation, through pathways related to inflam-
mation (183, 184).

Various pathogens exploit PARP activity to promote conditions favorable to growth
and virulence. In contrast, Chlamydia trachomatis infection led to the degradation of
PARP1 through the action of a specific bacterial enzyme, chlamydial protease-like
activity factor (CPAF) (448), and this was associated with the inhibition of HMGB1
release from the nucleus along with degradation of HMGB1 (449). This would lead to
a reduced inflammatory response. CPAF is downregulated during persistent infection,
allowing PARP1 activation and HMGBT1 release (450). Chronic inflammation thus may be
observed during persistent disease.

NAD™* production through the activity of the indoleamine 2,3-dioxygenase (IDO)
enzyme has been shown to assist the clearing of pathogenic infections. For example,
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IDO induced by IFN-y inhibited the replication of Staphylococcus aureus (451), and
CD4+ T cells inhibited the growth of Mycobacterium tuberculosis by sequestering
tryptophan, the precursor to NAD* (452). It should be noted, however, that some
pathogens are NAD™ auxotrophs and require NAD* obtained from the host cell to
replicate. For example, Borrelia burgdorferi and Brucella abortus, both intracellular
pathogens, produce nicotinamidases that convert NAM to nicotinic acid (NA), a pre-
cursor to NAD™ in the Preiss—Handler pathway (453, 454). Haemophilus influenzae lacks
the Preiss-Handler pathway for NAD biosynthesis and requires NMN and NR as precur-
sors (455-457). Structural data for H. influenzae NAD nucleotidase (NadN), a periplasmic
enzyme, have suggested a novel mechanism for the synthesis of NAD™ that involves its
hydrolysis to NR, adenosine, and phosphate, followed by uptake of NR across the inner
membrane and resynthesis via the NadR enzyme. A significant conformational change
is involved during catalysis, which suggests likely avenues for inhibitor development
(457). These enzymes are also found in other bacteria and in parasites such as
Leishmania. In Leishmania, knockout of the enzyme led to a significant decrease in
NAD™ content and a reduction in virulence (458). The Leishmania parasite was shown
to increase intracellular NAD levels once present in the cell (459).

Role of PARG

Damage to strands of DNA activates repair pathways, which involve PARPs, to the
site of repair, where the synthesis of PAR polymers is often prompted. This biochemical
reaction is regulated by an enzyme known as poly(ADP-ribose) glycohydrolase (PARG).
The reversibility of the ADP-ribosylation reaction is shown through the action of PARG,
which hydrolyzes the PAR polymer (460). PARG activity is primarily responsible for the
degradation of PAR polymers whose mass accumulation is metabolically harmful to the
cell, as described above (461). In addition to the disruption of NAD* metabolism,
excessive PARP activity and PAR production could have unpredictable effects on
RNA-binding and DNA-binding proteins through competition for binding (462) and
could cause the dysregulation of cellular organelle assembly and stability (463).

PAR polymers produced upon DNA damage are short-lived, with a half-life of less
than 1 min. This is in contrast to constitutively produced polymers, which are longer-
lived, with half-lives of ~8h (464-468). The degradation of PAR polymers occurs
specifically at glycosidic bonds by hydrolysis and yields free ADP-ribose (469). PARG
production is regulated by a single gene, producing a protein which is approximately
110 kDa with a C-terminal catalytic domain (470-472). While full-length PARG remains
in the nucleus, shorter isoforms are also present and are distributed predominantly in
the cytoplasm (473-475). These isoforms vary not only in size but also in the way in
which they are activated by biological events such as apoptosis or proteolysis of their
posttranslational modifications (PTMs). PARG nuclear localization increases upon DNA
damage, presumably in response to the high level of PARylation produced by PARPs
(476, 477).

Though PAR is integral to the regulation of cellular death pathways, the role of PARG
was not well understood. Recently it has been demonstrated that following a lethal
dosage of the alkylating agent N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) to Hela
cells, PARP1 directly interacts with PARG, even in the absence of NAD™* or PAR,
facilitating nonapoptotic cellular death pathways (478). A role of PARG in apoptotic cell
death has also been suggested. It is thought that the preferential binding of DNA repair
factor XRCC1 to PARylated PARP1 to help facilitate repair displaces PARG from PARP1,
which triggers a cascade of apoptosis. (272, 478).

PARG has further been demonstrated to be necessary for cell survival in murine
models, where the absence of PARG in embryonic cells proved to be lethal (461).
However, in other studies, the absence of PARG was not shown to be essential for
survival in the absence of genotoxic stress, which suggests that stress plays a pivotal
role in PARG activity (479-481). This has been supported by studies showing that in the
presence of genotoxic stress, cells lacking PARG exhibited increased cell death in
addition to the nonrepair of single- and double-strand DNA breaks (482-484). In
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response to replicative stress conditions, PARG is pivotal in regulating the mass
accumulation of PAR, arresting the collapse of replication forks and the development of
additional DSBs (480).

PARG was shown to be integral to the growth of Trypanosoma cruzi epimastigotes,
and PARG inhibition caused changes to the cell cycle in the parasite. Knockdown of
host cell PARG also abrogated T. cruzi infection (485). In Trypanosoma brucei, PARG
knockdown led to increased sensitivity to oxidative stress (486). Hence, PARG function-
ality is also essential for establishing trypanosomal infection.

A strong case can be made for the importance of the biomedical implications of the
inhibition of PARG in the field of cancer therapy. For example, the absence or inhibition
of PARG has been shown to arrest the metastasis of cancer cells in the human colon and
in murine models, the death of BRCA-2 tumor cells (487, 488), and cell death of
homologous repair-deficient tumor cells (489). PARG silencing led to a reduction in
PARP expression and a decrease in signaling through the phosphatidylinositol (Pl)
3-kinase/Akt pathway, mediated through a reduction in NF-«B (487).

The inhibition of binding between PARG and the human antigen R (HuR) RNA-
binding protein helps to improve PARP inhibition therapy in pancreatic cancer cells
(490). Another study presented work demonstrating that the inhibition of PARG helped
to reduce the negative effects of cellular exposure to benzo[alpyrene, a polycyclic
aromatic hydrocarbon known to induce carcinogenesis (491, 492).

The focus of PARG inhibitor therapy for cancer can be attributed to the role it has
in DNA repair, like PARP1, -2, and -3. Importantly, PARG is encoded by a single gene, in
comparison to the 17 human PARP genes. As a result, all isoforms of PARG have a
conserved catalytic domain, which offers a more direct target for inhibitor development
(493). It has been demonstrated that PARG inhibitors offer unique pharmacological
effects in comparison to olaparib, the first PARP inhibitor to be accepted by the FDA
(494-496). Several PARG inhibitors, both synthetic and natural, have been identified;
however, their wide use is limited by problems with toxicity and cell permeability
(497-499). Four specific inhibitors of PARG, ADP (hydroxymethyl)pyrrolidinediol (ADP-
HPD), mono-galloyl glucose, rhodanine-based PARG inhibitor 2 (RBPI-2), and salicylan-
ilide, have increased specificity to PARG and have been used extensively to help
uncover the breadth of the biological role of PARG inhibitors (488, 500-503). Recently,
new smaller inhibitors, known as phenolic hydrazide hydrazones, have been synthe-
sized and shown to be effective inhibitors of PARG in vitro, with 50% inhibitory
concentration (IC5,) values in the micromolar range (504).

The role of PARG in DNA repair has helped to highlight its potential as a target for
inhibitor development. To date the primary focus of PARG inhibitor research has been
in cancer therapy; thus, more research investigating the additional applications of PARG
inhibitor therapy is needed. Work on PARG inhibition against infection is in the
preliminary stages but is also promising.

MARylation and Its Reversal

MARYylation is a common mechanism used by bacterial toxins to interfere with host
cell metabolic and regulatory pathways. ADP-ribosylating toxins transfer an ADP-ribose
moiety to amino acids such as arginine, cysteine, and asparagine to acceptor proteins
in the host cell, destroying enzyme activity. This activity is shared by a family of proteins
including cholera toxin, diphtheria toxin, pertussis toxin, and others (10). These toxins
are structurally and functionally related to the PARP enzymes (505). In addition to the
modifications carried out by pathogens, these PTMs are also exerted by host cell PARPs
for numerous regulatory functions, as has been described above.

MARylation cannot be removed by PARG, and its reversal requires other enzymes
(186). Instead, mono(ADP-ribosyl) units are acted on by two other classes of enzymes,
namely the ADP-ribosylhydrolases (ARHs) and the macrodomains. The former are
homologues of the dinitrogenase reductase-activating glycohydrolase (DraG). In hu-
mans, three ARHs are expressed and have functions that are yet to be fully understood.
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Though ARH2 is thought to be catalytically inactive (506-508), the other two enzymes
are active in the hydrolysis of the ADP-ribosylation modification.

ARH1 is a site-specific hydrolase of MARylated proteins at arginine residues (509).
This enzyme plays a role in the suppression of tumorigenesis through regulating cell
proliferation and the cell cycle (510). ARHT mutants or knockout cells with low enzyme
activity were tumorigenic, and ARH1 mutants identified in the human cancer database
localized to the enzyme catalytic site (511). Importantly, ARH1 knockout mouse cells
could not hydrolyze MARylated arginine, showing that ARH1 is the only cytoplasmic
enzyme able to degrade this PTM (512). The enzyme also plays a role in the response
to cholera toxin. Cholera toxin is an ADP-ribosylating toxin that acts on the « subunit
of the Gs protein (Gsa, a binding partner of adenylate cyclase). Activation of adenylate
cyclase leads to increased cellular cyclic AMP, ion efflux from the cell via the cystic
fibrosis transmembrane regulator (CFTR), and fluid loss from the intestine. In ARH1
knockout mice and fibroblasts, MARylation of Gsa was increased and was longer
lasting, together with increased fluid accumulation in the intestine (512). These obser-
vations suggest that ARH1 is important in the host cell response to cholera toxin.

ARH3 catalyzes primarily exolytic activity, acting mainly at terminal sites of PAR
chains and on MARylated serine residues. Its activity varies from that of PARG, in that
it site specifically hydrolyzes PAR at chain termini, by a Mg2*-dependent mechanism,
to yield ADP-ribose (513). Two amino acids, D77 and D78, are critical for hydrolase
activity (506-508). An important physiological role of ARH3 is to protect cells from
parthanatos and to regulate PAR degradation in both the nuclei and cytoplasm (499).
Thus, oxidative stress stimulates increased PAR synthesis by PARP1 and PAR cleavage
by PARG in the nucleus. PAR is translocated to the cytoplasm through nuclear pores
and releases mitochondrial membrane-associated AIF, which initiates parthanatos
(269-272, 514). ARH3 then acts to modulate the level of PAR by degrading these free
chains, starting at chain termini, after they have been translocated. Thus, ARH3 is
important in modulating and protecting cells from parthanatos (499).

ARH3 is also able to cleave proteins that are MARylated on serine residues. This
activity has been observed in human cancer cells (515, 516). Serine ADP-ribosylation is
a widespread and important PTM, appearing after DNA damage on histones (225, 517,
518) and high-mobility group proteins, DNA repair factors, and other proteins (519,
520). The sequence motifs KS and RS were shown to identify substrate proteins (516).
The activity of ARH3 is interesting in that it has no activity in hydrolyzing ADP-ribose
from arginine, cysteine, diphthamide, or asparagine bonds (506, 508, 521). ARH3, rather
than PARG, is responsible for mitochondrial PAR degradation, suggesting a function
related to PAR or O-acetyl-ADP-ribose (OAADPR) metabolism in the mitochondria (522).

Both ARH1 and ARH3 are able to degrade OAADPR produced by sirtuins (507).
OAADPR participates in ion channel gating (523), redox metabolism (524), chromatin
regulation (525, 526), and gene silencing (525). Therefore, ARH3 has a role in signal
transduction involving both PAR and OAADPR (reviewed in reference 527).

It is also known that some macrodomain proteins have the ability to degrade the
ADP-ribosyl modification. The macrodomain proteins terminal ADP-ribose protein gly-
cohydrolase (TARG1), MacroD1, and MacroD2 degrade mono(ADP-ribose) at glutamate
and aspartate residues. TARG1 degrades MAR by a different mechanism than PARG, by
breaking the ester linkage between PAR and glutamate, an action that cannot be
accomplished by PARG (186). MacroD1 exists primarily in the mitochondria and has low
specificity in its ADPR hydrolase activity, removing a broad spectrum of ADP-ribosyl
moieties with ester linkages from proteins, DNA, and small molecules (528). MacroD2,
in addition to its ADP-ribosylhydrolase function, acts mainly in the cytoplasm, where it
selectively deacetylates O-acetyl-ADP-ribose (529). Several macrodomain proteins have
also been identified as degraders of PAR.

It has been shown biochemically, structurally, and phylogenetically that viral and
cellular macrodomains are closely related (530). Therefore, it is not surprising that viral
macrodomains also have the ability to degrade ADP-ribosylation. Most macrodomains
from viruses belong to the MacroD class and are characterized by their ability to
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remove the entire PAR modification, similarly to TARG1 (167). The nsP3 macrodomain
from chikungunya virus can hydrolyze the MAR modification from aspartate and
glutamate, but not lysine, residues (171). Mutant viruses with reduced hydrolase activity
showed lower virulence in mice and slower replication in mammalian cells; mutants
with no activity were unable to replicate at all in mammalian or mosquito cells.
Therefore, this macrodomain is essential for viral replication, in both the host and the
insect vector, and for virulence (171).

It is believed that viral macrodomains can remove the MARylation and PARylation
modification (167). The Hepeviridae, Togaviridae, and Coronaviridae families of viruses
express conserved macrodomain proteins (531-539). Many of these macrodomains
exhibit ADP-ribosylhydrolase activity (171, 538, 540, 541). Macrodomain mutations that
reduced nsp3 ADP-ribosylhydrolase activity in vitro also led to a reduction of viral load
in infected mice and protected mice from an otherwise lethal severe acute respiratory
syndrome coronavirus (SARS-CoV) infection (173). This was attributed to changes in the
innate immune response, including an enhanced interferon and proinflammatory
cytokine response. These observations show that the SARS-CoV macrodomain is in-
volved in suppression of the innate immune response and cytokine repression and is
important for virulence (173). Its exact molecular target(s) is currently unknown. In
mouse hepatitis virus (MHV), the conserved macrodomain is required for induction of
liver disease and production of the inflammatory cytokines TNF-a and IL-6 (542). A
subsequent MHV study using a macrodomain point mutant showed a drop in viral titer,
cytokine and chemokine expression, and virulence with respect to those with the wild
type, supporting the role of the macrodomain in virulence and interaction with the
innate immune system (172). Other work demonstrated that mutant viruses of SARS-
CoV and human coronavirus 229E (HCoV-229E) lacking macrodomain activity were
highly sensitive to interferon and showed an unusual cytokine induction pattern and
slower growth, also suggesting participation of the macrodomain in resistance to the
innate immune system (170).

It has been suggested that macrodomain activity may antagonize the antiviral
effects of ADP-ribosylation (157). Most macrodomains possess conserved primary
sequences, but some subclasses lack sequence conservation, resulting in novel func-
tions. For example, Mycobacterium tuberculosis expresses a non-macroD-type macrodo-
main which has the ability to remove ADP-ribosylation from DNA rather than proteins.
In addition, it acts as an antitoxin to a mycobacterial toxin that ADP-ribosylates DNA at
specific thymidine residues (543). Coronaviruses encode additional macrodomains that
interact with guanine quadruplexes (168, 544) and target host cell p53 for ubiquityla-
tion and degradation by stabilizing the accumulation of the E3 ubiquitin ligase RCHY1
(178, 180). This domain is important in the replication of the viral RNA genome (178).
It is presently unclear whether the ADP-ribosylhydrolase function is shared by these
divergent domains.

Role of PARP in Inflammatory Autoimmune Disorders

PARP inhibitors are presently being explored as therapeutics to prevent cell death,
tissue damage, and dysfunction associated with aging or oxidation damage-related
pathologies, such as cardiovascular disease, stroke, autoimmune and inflammatory
disease, and diabetes. Reactive oxygen and nitrogen species are generated in cardio-
myocytes and endothelial cells during ischemia/reperfusion injury, cardiovascular ag-
ing, and diabetic complications. These reactive species induce oxidative DNA damage
and consequently activate PARPs (545). The effects of PARP inhibitors on inflammatory
responses may contribute to their therapeutic effects in cancers (546). Many cancer
cells display dysfunctional DNA repair, and PARP inhibition can assist in preventing
cellular replication (547). PARP inhibitors can play a crucial role in the treatment of both
BRCA-negative and -positive cancers and can be effectively used as therapeutics for
prostate, ovarian, and breast cancer. These applications have been reviewed elsewhere
(548).
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PARP inhibition has positive effects on inflammatory responses. Results published by
Garcia and coworkers in 2008 demonstrated that the inhibition of PARP1 reduced the
expression of proinflammatory cytokines (549). Inhibition of PARP1 repressed the
production of proinflammatory cytotoxic cytokines and enhanced the production of
anti-inflammatory cytokines (550-553).

PARP inhibitors were tissue-protective in animal models of multiple sclerosis, men-
ingitis, arthritis, stroke, and traumatic brain injury (241, 554-560). PARP inhibitors
reduced neuroinflammation, edema, leukocyte infiltration, and the expression of ad-
hesion proteins (242). PARP inhibition in leukocytes reduced inflammation via effects
on the cytoskeleton and reduced leukocyte adhesion and migration across the blood-
brain barrier (BBB) (561). PARP inhibitors protected the BBB and reduced its permea-
bility in in vitro and in vivo models of inflammation (557). PARP1 inhibition was also
protective in a model of pancreatitis and reversed chronic liver injury and fibrosis (562).
Studies conducted on PARP1 knockout mice further suggest that inhibitors of PARP are
a preventative therapy against inflammation, since the activation of PARP mediated the
progression of symptoms associated with hemorrhagic shock, such as lung inflamma-
tion and heart failure (563).

PARP inhibitors are in development for treatment of other inflammatory conditions.
Specific roles are seen in rheumatoid arthritis (RA), Graves’ disease, and Huntington'’s
disease. Two PARP polymorphisms were identified as effective in the treatment of
Graves' disease and Graves ophthalmopathy (564). PARP1 inhibition was also protective
in animal models of diabetic retinopathy and of Huntington’s disease (239, 565, 566).

Arthritis

Considered an autoimmune disease, rheumatoid arthritis (RA) is characterized by
inflammation occurring in the joints and surrounding tissue. This results in the deteri-
oration of the joint cartilage as well as the erosion of bone. This disease is observed in
all populations worldwide; however, there is no clear pathogenic pathway which has
been identified (567). In a collagen-induced arthritis (CIA) model, PARP1~/~ mice
showed lower levels of proinflammatory cytokine expression (568). This was corrobo-
rated by studies in patient-derived cells (549). In mouse models, PARP inhibition
resulted in a reduction in the onset of the disease (569-571). Thus, Kréger and
coworkers demonstrated that the combination usage of a PARP inhibitor and thalido-
mide, an inhibitor of tumor necrosis factor, had synergistic actions, resulting in the
successful inhibition of PARP (571). Inhibition of PARP arrested the progression of
previously established cases (571). 5-lodo-6-amino-1,2-benzopyrone (INH,BP), a novel
PARP inhibitor, showed positive dual effects on both the onset and the severity of the
disease (572). In addition, it is known that there is a positive correlation between the
phorbol ester-activated burst of white blood cells and the onset and progression of
arthritis (567, 570). When PARP activity was inhibited, the development of arthritis was
prevented.

PARP inhibitors, in conjunction with small interfering RNA (siRNA) technology, have
provided strong positive results in the treatment of RA (573). One factor that creates
concern is the possibility of DNA mutation acceleration due to long-term PARP inhibi-
tion. However, PARP inhibitors are well tolerated by patients, and it is possible that
without aggressive treatment the inflammation in the joints can be treated successfully
with the application of dosages within human tolerance.

Lupus

Systemic lupus erythematosus is an autoimmune disease that is characterized by
widespread inflammation. Both heredity and environmental factors have been identi-
fied as possible contributors (566). Abnormal metabolism of PARP has a role in the
development of lupus (574). There is a decrease in the synthesis of PARP in the leukocytes
of patients diagnosed with lupus, which may be a result of a defect in the transcription of
the gene (574). In addition, there is an elevation in the levels of anti-PARP and anti-PAR
autoantibodies found in patients (575, 576).
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Hyperthyroidism (Graves’ Disease)

Graves' disease is an autoimmune disease which is associated with hyperthyroidism.
The circulation of antibodies which mimic the thyroid-stimulating hormone (TSH), by
binding to and activating the substrate, contribute to pathogenesis. Several genes and
environmental factors have been identified (577). Polymorphism of PARP1 may be a
contributor to the development of Graves’ disease (564, 578, 579).

PARP STRUCTURE AND INHIBITION

PARPs are characterized by the presence of the PARP signature sequence and a
B-a-loop-B-a NAD*-binding fold. This sequence is not conserved equally among the
members of the PARP family, accounting for variations in catalytic function. There are
several other structural variations among the members of the PARP family. This
variation accounts for similarity in the catalytic activity along with the versatility of their
biological roles, cellular locales, binding partners, and substrate proteins. The most
current understanding of the domain structure of the 17 human PARP proteins is
illustrated in Fig. 1.

The PARP Signature Sequence and Its Significance

The PARP signature sequence is responsible for ADP-ribosyltransferase activity. It is
composed of 70 to 100 amino acids and includes the NAD*-binding site. The catalytic
activity of PARPs (resulting in PAR formation) occurs when the ADP-ribose moiety of
NAD™ is transferred to the target protein, with the release of nicotinamide. Catalysis
can be attributed to the NAD"-binding pocket, formed by B sheets and « helices,
between a conserved Glu residue on one side and His on the other. NAD* binding is
stabilized by a hydrogen bond between His and the 02’ hydroxyl of the adenosine
ribose (580). Catalysis is assisted by the HYE triad, which consists of H862, Y896, and
E988 (PARP1 numbering). In the triad, the glutamate residue acts as a general base,
while the histidine assists in orienting NAD™* for nucleophilic attack and stabilizing the
transition state and the tyrosine assists in NAD* binding (580-582). The catalytic site of
the PARP1 ART domain in the presence of an effective inhibitor, olaparib, is shown in
Fig. 4A. Olaparib interacts with two residues of the catalytic triad, H862 and Y896, and
forms hydrophobic interactions and hydrogen bonds with other residues in the binding
pocket (583, 584). Inhibitor classes are discussed further below.

The DNA-binding domain of PARP1 consists of tandem repeat zinc finger domains
which bind to DNA and activate the catalytic domain (585). A study by Ali et al. revealed
the crystal structure of the human PARP1-DBD bound to a DNA break. ZnF1 and ZnF2
domains of multiple PARPT molecules form a DNA break-sensing module (586). An
alternate mechanism suggests that DNA damage can also be detected by monomeric
PARP1, through cooperative action of flexibly linked ZnF1 and ZnF2 domains. This
mechanism proposes that the binding of ZnF2 positions ZnF1 via a fly-casting process
(587, 588). PARP1 “reels in” protein domains in the same molecule by binding to DNA,
triggering PARylation by unfolding an inhibitory HD subdomain (584, 587). Activation
by DNA binding triggers the automodification of PARP1.

The central region of the enzyme contains a BRCT (breast cancer type 1 suscepti-
bility protein [BRCA1] C-terminal) motif, which is involved in protein-protein interac-
tions (589). It is suggested that automodification in this domain and nearby causes the
release of DNA repair proteins required for the processing and repair of nicks. Auto-
modification reduces affinity for intact chromatin but not for nucleosomes with ex-
posed DNA ends and may cause PARP1’s release of DNA and convert PARP1 to a
histone-binding protein (86).

Coupling DNA Damage Detection to Catalytic Activity

Langelier et al. reported that upon binding of PARP1 to a DNA break, the domains
collapse together, establishing interdomain contacts that distort the structure of the
helical domain (HD) (590). When in complex with DNA, partial unfolding and destabi-
lization of the HD occur, and this underlies PARP1 activation (590) (Fig. 4B). In contrast

March 2019 Volume 83 Issue 1 e00038-18

Microbiology and Molecular Biology Reviews

mmbr.asm.org 25


https://mmbr.asm.org

Brady et al. Microbiology and Molecular Biology Reviews

N-Term

FIG 4 (A) Crystal structure of PARP1 bound to the inhibitor olaparib (orange) (PDB file 5ds3) (584). The catalytic triad, which
is comprised of H862, Y896, and E988, is highlighted in yellow. Residues shown in hot pink are those to which hydrogen bonds
(blue lines) form upon inhibitor binding to the protein (G863, R878, and $S904). In addition, the inhibitor forms hydrogen bonds
with Y896 of the catalytic triad (yellow). It is also predicted that the inhibitor participates in hydrophobic interactions with
several other residues highlighted in green (A880, N868, and Y907) in addition to hydrophobic interactions predicted to occur
at H862, G863, and R878. (B) Overlay of the crystal structures of the active conformation of the PARP1 enzyme from PDB file
4dqy (dark blue) and the inactive conformation of the enzyme from PDB file 1a26 (purple) (643, 644). Upon binding to DNA,
the protein converts to the active conformation, resulting in unfolding, in the HD domain (shaded in gray). Residues
comprising the catalytic triad (cyan) indicate the binding pocket of the protein. Residues L698 (green) and L701 (yellow) are
also highlighted because their removal from the hydrophobic core of the HD domain has been predicted to play a role in the
unfolding occurring in the HD upon activation.

to the DNA-bound form, crystal structures of the isolated PARP1 ART have shown an
active site that is open and accessible for binding to inhibitors. The HD occludes access
to the NAD"-binding site (591), and the changes in the HD conformation allow
increased access of substrates, leading to an increase in PARP1 activity (584). However,
molecular dynamics (MD) calculations that have positioned an extended histone pep-
tide tail into a rigid catalytic site have shown that the ART can accommodate a protein
substrate in the absence of DNA (592). In addition to the structural changes that
increase PARP1 activity, it is likely that the positioning of the region of automodification
in close proximity to the catalytic domain will contribute to PARP1T DNA damage-
dependent activity by increasing exposure to protein substrates. The positioning of the
automodification region can also explain the strong preference for PARP1 to attach
polymers to itself, rather than heteromodification of other molecules.

It is noteworthy that PARPs may also be activated by other factors, presumably
corresponding to their diverse roles in cells. For example, PARP2 was shown to be
activated by RNA (593). PARP1 could be activated by phosphorylation (594), by direct
protein/protein interaction (595), and by ADP-ribosylation by PARP3 (45). An interaction
with YB-1 was shown to control the level of PARylation depending on the significance
of DNA damage (596). The full biological significance and molecular mechanisms of
these alternate roles remain to be elucidated.

Research on the structure of PARP1, and other family members, has been focused
mainly on the catalytic domains in order to explore new avenues for drug design.
Studies have also been done to investigate the differences in the catalytic domains of
PARP family members in efforts to understand the differences in the activities of
polymerases versus mono(ADP-ribosyl)transferases. While recent studies have made
great strides in unraveling the structure of PARP1 and in identifying its potential
mechanism of action, there are significant gaps in understanding the process of
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automodification, as well as the interaction between the DNA-binding and catalytic
domains (42, 590, 591). Understanding these mechanisms is critical to gaining insight
into critical cellular functions that include processes spanning the complete life cycle of
the cell.

Inhibitor Classes

The pivotal role played by PARP in many biological processes makes it a prime target
for inhibitory therapies. Nicotinamide (NAM) and 3-aminobenzamide (3-AB) were the
first two inhibitors of PARP1 identified (597, 598). Benzamide and derivatives are
effective inhibitors of PARPs owing to their structural similarity to NAD* (599). How-
ever, many early inhibitors were not specific to individual PARPs, had IC,, values in the
micromolar range, and could sometimes have toxic side effects (600, 601). Many
inhibitors that have progressed to clinical trials are effective in treating various forms of
cancer. Yet the involvement of PARP1 in the progression of conditions such as chronic
inflammation, diabetes, and neurological disorders has piqued the interest of research-
ers to explore other areas (602).

In 1992, Banasik and coworkers demonstrated that many inhibitors of both
mono(ADP-ribosylation) and poly(ADP-ribosylation) exist and that the process may be
regulated by a number of cellular metabolites and structural components. For example,
metabolites such as unsaturated fatty acids and metabolites of tryptophan are strong
and specific inhibitors of PARP1 in vitro (601). New inhibitor classes, such as isoquino-
linones and quinazolinones, were discovered (601, 603). Tricyclic inhibitors, such as
diazepinoindolones, are another class that has attracted the interest of researchers.
These inhibitors were synthesized to maximize spatial and atomic interactions in the
NAD*-binding site of PARP1 (604). Isoquinolinones are another class of inhibitors that
have been interesting to researchers, as they have been implicated in the protection
from various diseases (601, 605). Since then, various studies identifying many of these
inhibitors have been conducted (601). A detailed PARP1 pharmacophore has been
developed (601, 603, 606-609).

Known PARP inhibitors include olaparib, rucaparib, niraparib, veliparib, simmiparib,
talazoparib, and iniparib, with the first three being FDA approved (610-612). Olaparib
is a bicyclic amide compound of the benzylphthalazinone class with an IC, of 5nM
(613). This compound was shown to block tumor growth in a BRCA2-deficient xenograft
mouse model and subsequently showed efficacy in several clinical trials against cancer
(614). The catalytic site of the PARP1 ART domain with the binding mode of olaparib is
shown in Fig. 4A. Olaparib forms hydrogen bonds with G863, R878, and S904 along
with Y896 of the catalytic triad. In addition, hydrophobic interactions occur with A880,
N868, Y907, H862, G863, and R878 (583). Veliparib and talazoparib are currently in
clinical trials, while iniparib development has been discontinued (615-617).

The development of more specific PARP inhibitors is an area with rapid progress,
and specific inhibitors for individual PARPs should help to elucidate their roles. It has
become clear that inhibitors which mimic the binding of NAD* yield poor specificity for
PARP1 (607, 618). In 2012, Wahlberg et al. showed that many well-characterized and
high-affinity PARP inhibitors have promiscuous inhibitory activity, binding to several
PARP family members (618). Hence, many recent studies focus on the identification of
inhibitors which bind to the adenine subsite, located adjacent to the NAD*-binding
pocket (618). It is hypothesized that since the function of each family member is
different, there should be some structural variations among PARPs. Since the ART is
highly conserved, binding to an alternate site may elicit binding specificity (619).
Haikaranen and coworkers identified an inhibitor, JW55, as well as several of its
analogues which were shown to be potent and selective tankyrase inhibitors that
bound to the adenine subsite (620). Continued development of inhibitors of the
tankyrases target other binding sites, while some have been designed to target both
the adenine subsite and the NAD"-binding site, effectively tuning inhibitor specificity
for the tankyrases (621).
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FIG 5 Close-up view of PARP14 bound to a bidentate inhibitor, H10 (red), which binds to both the
NAD*-binding pocket and adenine subsite to which its specificity can be attributed. The inhibitor
participates in polar interactions (orange), hydrogen bonds (purple), and hydrophobic interactions
(green) (619).

Bidentate inhibitors, which bind to both the NAD* and adenine subsites, have
attracted much interest, as they may offer improved specificity (618). Analysis of crystal
structures by Haikaranen et al. identified EB-47 as a bidentate inhibitor of PARP5a and
-5b (622). Johannes et al. also have published work identifying bidentate inhibitors of
the tankyrases (PARP5a and -5b) (623). The search for potential inhibitors of PARPs has
led researchers to employ screening techniques that center on high-throughput meth-
ods. An example is work published by Peng and coworkers using a small-molecule
microarray to screen for inhibitors of PARP14 (619). Using this method, another
bidentate compound was identified. The compound, H10, containing a 3-sulfonamide
benzoic acid moiety, inhibited PARP14 with an IC,, of 0.49 uM. The specificity of the
inhibitor can be attributed to its ability to dually bind at both the NAD*-binding pocket
and the adenine subsite (619) (Fig. 5). Due to structural differences in the adenine
subsite, this strategy can yield selectivity, and the inhibitor obtained in this case had
24-fold selectivity for PARP14 over PARP1. As described above, the PARP14 enzyme is
associated with various inflammatory processes and several types of cancer (261, 624,
625).

Other screening methods used thermal shift analysis to observe increases in protein
denaturation temperatures as an indication that a stabilizing binding interaction occurs
between the protein and prospective inhibitor (618). Fluorescence-based assays have
been developed for PARP1 and for the tankyrases (626). Inhibitors of the MARTs PARP15
and PARP10 were identified using an assay optimized for these enzymes (627). The ICs,
values of the identified inhibitors agreed well with previous work using a different
method. The establishment of this assay for screening PARP15 and PARP10 will allow
for future studies toward the development of more potent and selective inhibitors.
Recent work investigating the selectivity versus promiscuity of known inhibitors with
the various PARP enzymes has also been conducted. The findings from this study
provide data highlighting the structural basis of inhibitor binding (628).

Computational approaches have also been employed. Novel inhibitor scaffolds have
been revealed by strategies including docking, active-site fingerprinting, and molecular
dynamics (MD) simulations incorporating pharmacophore modeling to account for the
dynamics of the potential inhibitors in the binding site (629-634). There are also new
inhibitor therapies for use as single or combination therapy being developed by both
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synthesis and modification of existing inhibitors (635). Recently a computational
screening analysis identified a natural product known as ZINC67913374, which is
predicted to be an improved inhibitor compared to olaparib (583). The combination of
these theoretical, chemical, and biophysical approaches holds great promise for the
development of selective inhibitors to target PARP functions within cells and tissues.

CONCLUSION

The review presented here gives an overview of recent findings in regard to the

biological functions of the PARP family of proteins. Though the function of PARP1 is the
best studied, this review highlights functions of many of the other family members
which have been recently identified. Specifically, work was highlighted which impli-
cated the function of this family of proteins in immune and inflammatory responses,
suggesting that these enzymes are very promising for future therapeutic development.
In addition, some of the most recent work pertaining to the structural and biophysical
characteristics of PARP enzymes has offered solutions to the challenges of overcoming
promiscuous inhibitor binding. The structural diversity and the wide array of biological
functions in this class of enzymes attest to their importance in the progression of

diseases in regard to both immune and inflammatory responses.
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